Redis
1.redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
redis 持久化的两种方式
RDB:RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。
AOF(append only file):AOF 机制对每条写入命令作为日志,以
append-only
的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。RDB 优缺点
- RDB 会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。
- RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。
- 相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。
- 如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。
- RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。
AOF 优缺点
- AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次
fsync
操作,最多丢失 1 秒钟的数据。- AOF 日志文件以
append-only
模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。- AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在
rewrite
log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。- AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用
flushall
命令清空了所有数据,只要这个时候后台rewrite
还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条flushall
命令给删了,然后再将该AOF
文件放回去,就可以通过恢复机制,自动恢复所有数据。- 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。
- AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒
fsync
一次日志文件,当然,每秒一次fsync
,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低)- 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志 / merge / 回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。
RDB 和 AOF 到底该如何选择
- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
- 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。
2.说说缓存雪崩、缓存击穿、缓存穿透吧,解决办法?
缓存雪崩
出现过程
假设有如下一个系统,高峰期请求为5000次/秒,4000次走了缓存,只有1000次落到了数据库上,数据库每秒1000的并发是一个正常的指标,完全可以正常工作,但如果缓存宕机了,或者缓存设置了相同的过期时间,导致缓存在同一时刻同时失效,每秒5000次的请求会全部落到数据库上,数据库立马就死掉了,因为数据库一秒最多抗2000个请求,如果DBA重启数据库,立马又会被新的请求打死了,这就是缓存雪崩。
解决方法
- 事前:redis高可用,主从+哨兵,redis cluster,避免全盘崩溃
- 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL被打死
- 事后:redis持久化RDB+AOF,快速恢复缓存数据
- 缓存的失效时间设置为随机值,避免同时失效
缓存穿透
出现过程
假如客户端每秒发送5000个请求,其中4000个为黑客的恶意攻击,即在数据库中也查不到。举个例子,用户id为正数,黑客构造的用户id为负数,如果黑客每秒一直发送这4000个请求,缓存就不起作用,数据库也很快被打死。
解决方法
- 对请求参数进行校验,不合理直接返回
- 查询不到的数据也放到缓存,value为空,如 set -999 “”
- 使用布隆过滤器,快速判断key是否在数据库中存在,不存在直接返回
缓存击穿
出现过程
设置了过期时间的key,承载着高并发,是一种热点数据。从这个key过期到重新从MySQL加载数据放到缓存的一段时间,大量的请求有可能把数据库打死。缓存雪崩是指大量缓存失效,缓存击穿是指热点数据的缓存失效
解决方法
设置key永远不过期,或者快过期时,通过另一个异步线程重新设置key
当从缓存拿到的数据为null,重新从数据库加载数据的过程上锁,下面写个分布式锁实现的demo
1
2
3 1,缓存雪崩:如果缓存中某一时刻大批热点数据同时过期,那么就可能导致大量请求直接访问Mysql了,解决办法就是在过期时间上增加一点随机值,另外如果搭建一个高可用的Redis集群也是防止缓存雪崩的有效手段
2.缓存击穿:和缓存雪崩类似,缓存雪崩是大批热点数据失效,而缓存击穿是指某一个热点key突然失效,也导致了大量请求直接访问Mysql数据库,这就是缓存击穿,解决方案就是考虑这个热点key不设过期时间
3.缓存穿透:假如某一时刻访问redis的大量key都在redis中不存在(比如黑客故意伪造一些乱七八糟的key),那么也会给数据造成压力,这就是缓存穿透,解决方案是使用布隆过滤器,它的作用就是如果它认为一个key不存在,那么这个key就肯定不存在,所以可以在缓存之前加一层布隆过滤器来拦截不存在的key
3.redis为什么快
- 1、
Redis
是一款纯内存结构,避免了磁盘I/O
等耗时操作。- 2、
Redis
命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。- 3、采用了
I/O
多路复用机制,大大提升了并发效率。
4.redis缓存淘汰策略
Redis内存不足的缓存淘汰策略提供了8种。
noeviction:当内存使用超过配置的时候会返回错误,不会驱逐任何键
allkeys-lru:加入键的时候,如果过限,首先通过LRU算法驱逐最久没有使用的键
volatile-lru:加入键的时候如果过限,首先从设置了过期时间的键集合中驱逐最久没有使用的键
allkeys-random:加入键的时候如果过限,从所有key随机删除
volatile-random:加入键的时候如果过限,从过期键的集合中随机驱逐
volatile-ttl:从配置了过期时间的键中驱逐马上就要过期的键
volatile-lfu:从所有配置了过期时间的键中驱逐使用频率最少的键
allkeys-lfu:从所有键中驱逐使用频率最少的键
1
2
3
4
5
6
7
8 这八种大体上可以分为4中,lru、lfu、random、ttl。
lru:Least Recently Used),最近最少使用
lfu:Least Frequently Used,最不经常使用法
ttl:Time To Live,生存时间
random:随机
默认是noeviction。对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外
eviction:“逐出;赶出;收回”。
volatile:“不稳定的”。Redis默认的过期策略是noeviction, 最暴力那个, 如果内存满了那就是一场“华丽”的故事了。
5.Redis有哪些数据结构?分别有哪些典型的应用场景?
Redis的数据结构有:
- 字符串:可以用来做最简单的数据缓存,可以缓存某个简单的字符串,也可以缓存某个json格式的字符串,Redis分布式锁的实现就利用了这种数据结构,还包括可以实现计数器、Session共享、分布式ID
- 哈希表:可以用来存储一些key-value对,更适合用来存储对象
- 列表: Redis的列表通过命令的组合,既可以当做栈,也可以当做队列来使用,可以用来缓存类似微信公众号、微博等消息流数据
- 集合:和列表类似,也可以存储多个元素,但是不能重复,集合可以进行交集、并集、差集操作,从而可以实现类似,
我和某人共同关注的人、朋友圈点赞等功能- 有序集合:集合是无序的,有序集合可以设置顺序,可以用来实现排行榜功能
6.Redis分布式锁底层是如何实现的
- 首先利用setnx来保证:如果key不存在才能获取到锁,如果key存在,则获取不到锁
- 然后还要利用lua脚本来保证多个redis操作的原子性
- 同时还要考虑到锁过期,所以需要额外的一个看门狗定时任务来监听锁是否需要续约
- 同时还要考虑到redis书点挂掉后的情况,所以需要采用红锁的方式来同时向N/2+1个节点申请锁,都申请到了才证明获取锁成功,这样就算其中某个redis节点挂掉了,锁也不能被其他客户端获取到
7.Redis和Mysql如何保证数据一致
1.先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不一致
2.先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中,这种方案能解决1方案的问题,但是在高并发下性能较低,而且仍然会出现数据不一致的问题,比如线程1删除了Redis缓存数据,正在更新Mysql,此时另外一个查询再查询,那么就会把Mysql中老数据又查到Redis中
3,延时双删,步骤是:先删除Redis缓存数据,再更新Mysql,延迟几百毫秒再删除Redis缓存数据,这样就算在更新Mysql时,有其他线程读了Mysql,把老数据读到了Redis中,那么也会被删除掉,从而把数据保持一致
8.redis的应用场景?
1.缓存
缓存现在几乎是所有中大型网站都在用的必杀技,合理的利用缓存不仅能够提升网站访问速度,还能大大降低数据库的压力。Redis提供了键过期功能,也提供了灵活的键淘汰策略,所以,现在Redis用在缓存的场合非常多。
2.排行榜
很多网站都有排行榜应用的,如淘宝的月度销量榜单、商品按时间的上新排行榜等。Redis提供的有序集合数据类构能实现各种复杂的排行榜应用。
3.计数器
什么是计数器,如电商网站商品的浏览量、视频网站视频的播放数等。为了保证数据实时效,每次浏览都得给+1,并发量高时如果每次都请求数据库操作无疑是种挑战和压力。Redis提供的incr命令来实现计数器功能,内存操作,性能非常好,非常适用于这些计数场景。
4.分布式会话
集群模式下,在应用不多的情况下一般使用容器自带的session复制功能就能满足,当应用增多相对复杂的系统中,一般都会搭建以Redis等内存数据库为中心的session服务,session不再由容器管理,而是由session服务及内存数据库管理。
5.分布式锁
在很多互联网公司中都使用了分布式技术,分布式技术带来的技术挑战是对同一个资源的并发访问,如全局ID、减库存、秒杀等场景,并发量不大的场景可以使用数据库的悲观锁、乐观锁来实现,但在并发量高的场合中,利用数据库锁来控制资源的并发访问是不太理想的,大大影响了数据库的性能。可以利用Redis的setnx功能来编写分布式的锁,如果设置返回1说明获取锁成功,否则获取锁失败,实际应用中要考虑的细节要更多。
6.朋友圈点赞
点赞、踩、关注/被关注、共同好友等是社交网站的基本功能,社交网站的访问量通常来说比较大,而且传统的关系数据库类型不适合存储这种类型的数据,Redis提供的哈希、集合等数据结构能很方便的的实现这些功能。
7.最新消息
Redis列表结构,LPUSH可以在列表头部插入一个内容ID作为关键字,LTRIM可用来限制列表的数量,这样列表永远为N个ID,无需查询最新的列表,直接根据ID去到对应的内容页即可。
8.消息队列
消息队列是大型网站必用中间件,如ActiveMQ、RabbitMQ、Kafka等流行的消息队列中间件,主要用于业务解耦、流量削峰及异步处理实时性低的业务。Redis提供了发布/订阅及阻塞队列功能,能实现一个简单的消息队列系统。另外,这个不能和专业的消息中间件相比