AQS的原理

AQS:全称是AbstractQuenedSynchronizer(抽象队列同步器)。是除了java自带的synchronized关键字之外的锁机制。

AQS的核心思想是:

如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并将共享资源设置为锁定状态,如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and Hagersten locks)队列是一个虚拟的双向队列,虚拟的双向队列即不存在队列实例,仅存在节点之间的关联关系。
AQS是将每一条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node),来实现锁的分配。

用大白话来说,AQS就是基于CLH队列,用volatile修饰共享变量state,线程通过CAS去改变状态符,成功则获取锁成功,失败则进入等待队列,等待被唤醒。

注意:AQS是自旋锁:在等待唤醒的时候,经常会使用自旋(while(!cas()))的方式,不停地尝试获取锁,直到被其他线程获取成功

实现了AQS的锁有:自旋锁、互斥锁、读锁写锁、条件产量、信号量、栅栏都是AQS的衍生物

在这里插入图片描述

如图示,AQS维护了一个volatile int state和一个FIFO线程等待队列,多线程争用资源被阻塞的时候就会进入这个队列。state就是共享资源,其访问方式有如下三种:

1
2
3
4
5
getState()

setState()

compareAndSetState()

AQS 定义了两种资源共享方式:
1.Exclusive:独占,只有一个线程能执行,如ReentrantLock
2.Share:共享,多个线程可以同时执行,如Semaphore、CountDownLatch、ReadWriteLock,CyclicBarrier

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

1
2
3
4
5
isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false
tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false
tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false

state状态

AbstractQueuedSynchronizer维护了一个volatile int类型的变量,用户表示当前同步状态。volatile虽然不能保证操作的原子性,但是保证了当前变量state的可见性。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* The synchronization state.
*/
private volatile int state;

/**
* Returns the current value of synchronization state.
* This operation has memory semantics of a {@code volatile} read.
* @return current state value
*/
protected final int getState() {
return state;
}

/**
* Sets the value of synchronization state.
* This operation has memory semantics of a {@code volatile} write.
* @param newState the new state value
*/
protected final void setState(int newState) {
state = newState;
}

/**
* Atomically sets synchronization state to the given updated
* value if the current state value equals the expected value.
* This operation has memory semantics of a {@code volatile} read
* and write.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that the actual
* value was not equal to the expected value.
*/
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

应用实现

  • Lock

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;

    /**
    * Performs lock. Try immediate barge, backing up to normal
    * acquire on failure.
    */
    final void lock() {
    if (compareAndSetState(0, 1))
    setExclusiveOwnerThread(Thread.currentThread());
    else
    acquire(1);
    }

    protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
    }
    }

    public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
    acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
    selfInterrupt();
    }

    通过注释我们知道,acquire方法是一种互斥模式,且忽略中断。该方法至少执行一次tryAcquire(int)方法,如果tryAcquire(int)方法返回true,则acquire直接返回,否则当前线程需要进入队列进行排队。函数流程如下:

    • tryAcquire()尝试直接去获取资源,如果成功则直接返回;
    • addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
    • acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
    • 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

    tryAcquire

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    protected boolean tryAcquire(int arg) {
    throw new UnsupportedOperationException();
    }
    final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
    if (compareAndSetState(0, acquires)) {
    setExclusiveOwnerThread(current);
    return true;
    }
    }
    else if (current == getExclusiveOwnerThread()) {
    int nextc = c + acquires;
    if (nextc < 0) // overflow
    throw new Error("Maximum lock count exceeded");
    setState(nextc);
    return true;
    }
    return false;
    }

    1.判断状态位是否为0,0是可以占用,如果是0的话占用,不是0的话返回false

    2.判断当前线程是否为得到位置的线程,比如如果前一个线程走了,然后又回来有点事情的话,那么返回false